If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 7k2 + 9k + 1 = 0 Reorder the terms: 1 + 9k + 7k2 = 0 Solving 1 + 9k + 7k2 = 0 Solving for variable 'k'. Begin completing the square. Divide all terms by 7 the coefficient of the squared term: Divide each side by '7'. 0.1428571429 + 1.285714286k + k2 = 0 Move the constant term to the right: Add '-0.1428571429' to each side of the equation. 0.1428571429 + 1.285714286k + -0.1428571429 + k2 = 0 + -0.1428571429 Reorder the terms: 0.1428571429 + -0.1428571429 + 1.285714286k + k2 = 0 + -0.1428571429 Combine like terms: 0.1428571429 + -0.1428571429 = 0.0000000000 0.0000000000 + 1.285714286k + k2 = 0 + -0.1428571429 1.285714286k + k2 = 0 + -0.1428571429 Combine like terms: 0 + -0.1428571429 = -0.1428571429 1.285714286k + k2 = -0.1428571429 The k term is 1.285714286k. Take half its coefficient (0.642857143). Square it (0.4132653063) and add it to both sides. Add '0.4132653063' to each side of the equation. 1.285714286k + 0.4132653063 + k2 = -0.1428571429 + 0.4132653063 Reorder the terms: 0.4132653063 + 1.285714286k + k2 = -0.1428571429 + 0.4132653063 Combine like terms: -0.1428571429 + 0.4132653063 = 0.2704081634 0.4132653063 + 1.285714286k + k2 = 0.2704081634 Factor a perfect square on the left side: (k + 0.642857143)(k + 0.642857143) = 0.2704081634 Calculate the square root of the right side: 0.520007849 Break this problem into two subproblems by setting (k + 0.642857143) equal to 0.520007849 and -0.520007849.Subproblem 1
k + 0.642857143 = 0.520007849 Simplifying k + 0.642857143 = 0.520007849 Reorder the terms: 0.642857143 + k = 0.520007849 Solving 0.642857143 + k = 0.520007849 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-0.642857143' to each side of the equation. 0.642857143 + -0.642857143 + k = 0.520007849 + -0.642857143 Combine like terms: 0.642857143 + -0.642857143 = 0.000000000 0.000000000 + k = 0.520007849 + -0.642857143 k = 0.520007849 + -0.642857143 Combine like terms: 0.520007849 + -0.642857143 = -0.122849294 k = -0.122849294 Simplifying k = -0.122849294Subproblem 2
k + 0.642857143 = -0.520007849 Simplifying k + 0.642857143 = -0.520007849 Reorder the terms: 0.642857143 + k = -0.520007849 Solving 0.642857143 + k = -0.520007849 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-0.642857143' to each side of the equation. 0.642857143 + -0.642857143 + k = -0.520007849 + -0.642857143 Combine like terms: 0.642857143 + -0.642857143 = 0.000000000 0.000000000 + k = -0.520007849 + -0.642857143 k = -0.520007849 + -0.642857143 Combine like terms: -0.520007849 + -0.642857143 = -1.162864992 k = -1.162864992 Simplifying k = -1.162864992Solution
The solution to the problem is based on the solutions from the subproblems. k = {-0.122849294, -1.162864992}
| v+7=0 | | x+y+z=-1 | | 4(3x-2)+7(x+3)= | | ln(-x)+ln(7)=4 | | 44=4-5x | | ln(-7x)=4 | | 7x-20=-27 | | 2*3-5+7/6+4^2 | | 2.3-5+7/6+4^2 | | 2x-y+3z=8 | | (t^2)+3t=0 | | (-4i)(10i)= | | (8i)(2i)= | | n^2-20n+64=0 | | 12t+4=19 | | 5/3y-7=53 | | (6i)(3i)= | | x^2+6x-46=-6 | | r^2+2r-17=7 | | 6t+3=9 | | k^2-12k-72=-8 | | x^2-20ab=0 | | x^(1/5)=2 | | x^(1/3)=-2 | | .7a=.6 | | x^2-x(5s-2r)-10rs=0 | | r^2-20r+91=8 | | x^2-10rs=0 | | r^2-20r+91=0 | | 11050x^2-890000x+500000=0 | | 2/3x-1=9-1/6x | | -7+2.5h=19-4h |